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SUMMARY

Dynamic responses of offshore structures to random waves and steady

current are examined. Hydrodynamic forces acting on the structures are

computed ac< ording to Morison's formula. Small amplitude wave theory is

invoked and the structures are assumed to respond in the linear range.

The structures are idealized as lumped mass systems for dynamic

analysis purposes. Effects of fluid-structure interactions are included

and the nonlinear stochastic differential equations governing structural

responses are solved by the statistical equivalent linearization techniques

together with the method of normal mode superposition. The phenomenon of

wave-current. interactions is known to change wave characteristics; its

effects on structural responses are also considered

The st.ructural response quantities examined are the displacement,

shear and bending moment. The statistic sought is the peak response which

is the quantity directly used in design considerations.

Numeri.cal results are obtained for four offshore towers, ranging

in heights from 415 feet to 1075 feet, for various wave and current con-

ditions. Results are presented graphically. It is shown that structural

responses ircrease with increase in current speed but the effects of wave-

current interactions are important only for tall slender structures. Also,

the effects of current on structural response diminishes with increase in

the strength of the waves.
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1. INTRODUCTION

With the advent of increased activities in the ocean in recent years,

more and more structures are being designed and constructed in the ocean

in deeper waters. Among the various types of deep water structures, the

fixed-bottom platform appears to have been widely favored by engineers.

Co~posed o:. slender members, these structures are flexible and are suscep-

tible to dynamic excitation.

The design of offshore structures requires the consideration of

various forces the st'ructures must resist. Among the forces, those due

to wind, wave, current, and strong motion earthquake are of primary impor-

tance. The dynamic behavior of fixed-bottom platforms to wave action only

has been studied by Harleman, Nolan and Honsinger �963!, Gaither and

Billington �964!, Billington, Gaither, and Ebner �966! for the case of

deterministic waves, and by Nath and Harleman �969!, Foster �967!,

Malhotra and Penzien �970! for the case of random wind waves. The

effects of earthquake an such structures have also been considered by

Penzien, Kaul and Berge �972!.

In all the work cited above, wave forces exerted on members of the

structure are computed according to Morison's formula. That is, forces

are considered to consist of two parts: the drag force, proportional

to the square of fluid particle velocity, and the inertia force, pro-

portional to fluid particle acceleration.

In the work of Foster �967!, Malhotra and Penzien �970!, and

Penzien, Kaul and Berge �972!, it was pointed out that on flexible

structures the velocity and acceleration of the structure may be of the

same order of magnitude as the fluid particle velocity and acceleration.



Thus, in calculating the farces from Morison'a formula, the relative

velocity and acceleration of the fluid particle with respect to the

structure should be used. It was found that the effects of the dynamic

interaction between structure and surrounding fluid and the nonlinear

drag forces had considerable influence an structural response.

When current is present, fluid forces may still be evaluated ac-

cording to I orison's formula  Myers, 1969!. This is achieved by con-

sidering fluid particle velocity as the vector sum of current velocity

and wave induced fluid particle velocity. Since the drag force is non-

linear, it cannot be regarded as simple superposition of current and

wave drag forces. Consequently, dynamic response of offshore structures

to combined actions of waves and current cannot be derived from those

due to waves and current separately and a new formulation and derivation

ia required.

In considering the effects of current and waves on structural

response, the phenomenon of wave-current interactions should also be

considered. It is well known that when a wave encounters an externally

generated current, wave characteristics undergo change. If the current

is in the direction of the wave, wave amplitude decreases and wave

length increases  Languet-Higgins and Stewart, 1961!; if the current

opposes the wave, then the situation is reversed. In a rando~ wave field,

component waves are affected by current in s simi.lar manner resulting in

the modification of the wave spectrum  Huang et al., 1972!. Subsequent

to these studies, investigation was carried aut to examine the effects

of wave-current interactions on wave field kinematics and wave force

 Tung and Huang, 1973, 1974!. Results indicated that drastic changes



indeed took place in the quantities examined. Therefore, the influence

of wave-current interactions on the dynamic response of the structure

is also included in this study.

In carrying out the investigation of the dynamic response of off-

shore structures to wave and current forces and the effects of wave-

current interactions on structural response, the foLlowing usual

assumptions are made regarding fluid motion:

1. Tae fluid motion is governed by small amplitude wave theory.

2. Tee random gravity waves are assumed to be one-dimensional and

the free surface elevation is Gaussian, stationary in time, and homoge-

neous in space.

3, The current is assumed to be in the direction of  or opposite to!

wave propagation.

4. The current is assumed to be steady in time, non-uniform in the

horizontal plane, and uniformly distributed along the depth of water.

Four offshore towers are analyzed to examine the effects of current

and waves on structure response. The structural characteristics of these

four towers are the same of those used by Penzien, Kaul, and Serge �972!.

The structures are idealized as lumped mass systems. Due to the

nonlinear random drag force and the interactions between structure and

fIuid motion, the motion of structure is governed by a set of nonlinear

stochastic differential equations. Solutions of nonlinear stochastic

differential equations are difficult to achieve. For the set of equations

considered, without the influence of current, the approximate method of

statistical equivalent linearization has been employed by Malhotra and

Penzien �970!. This method, with some modifications to incorporate the

presence of current, vill be used in this study.



For easy reference purpose, in Chapter 2, the analytical develop-

ment of small amplitude wave theory, descriptions of the random sea, and

the influence of wave-current interactions on wave characteristics, all

relevant to subsequent determination of statistical response of offshore

towers, are briefly summarized.

In Chapter 3, the differential equations governing the motion of

the structure are established. The response statistics are derived by

the method. of equivalent linearization technique.

In Chapter 4, numerical results of the response of four structures

under different wind and current conditions are computed and discussed.

In Chapter 5, conclusions and recommendations based on this study

are presented.



2. WAVES AND CURRENTS

2.l Single Wave

In this section, the theory of small amplitude single wave, upon

which subsequent development of random wave theory is based, is first

presented.

Consider the rectangular coordinate system shown in Figure 2.1 with

the x-axis in the horizontal plane, the y-axis vertically upwards, and

the origin at the mean water level. Let a single wave be propagating in

the direct"on of the x � axis. The instantaneous vertical displacement of

the free surface is specified by y n x,t!.

To determine the fluid motion in the wave field, for a first approxi-

mation, as has been commonly done  Ippen, 1966!, let the fluid be in-

compressible, inviscid, and irrotational.

Denote V  x, y, t! and V  x, y, t! the fluid particle velocities
x

in the x and y directions respectively. Irrotational flow condition re-

quires that BV BV
X

By Bx

in which the arguments x, y, and t of V  x, y, t! and V  x, y, t! are
X y

dropped for convenience. If the flow is irrotational, then there exists

a velocity potential g x, y, t! which can be defined so that

V ~ B!
x Bx

�.1!

V
y By

in which the arguments of P x, y, t! are again dropped for convenience.



Figuxe .'!.1. Definition sketch af wave system



Since the fluid is assumed to be incompressible, the continuity

equation i<

sv av
+~=o.

Bx 3y

Combining the continuity equation with Equation �.1!, the field of flow

can be represented by the Laplace ' s equation

Q 2f
+ 0. �. 2!

The solution of the Laplace's equation must satisfy the boundary

conditions at the free surface and at the bottom of the fluid. The

boundary condition at the horizontal, fixed, and impermeable bottom

requires that the normal velocity component be zero. That is

V 0 aty=-d
y

�. 3!

 V!
yn dt

8n an
+  V!

at xn 3x

where the subscript n indicates that the quantity is to be evaluated at

the free surface. The arguments of n x, t! are ignored here. In

in which d is water depth as shown in Figure 2.1.

If the position of the free surface is specified by y = n x, t!

at all times, then the material derivative  Ippen, 1966! of the position

of a particle is its velocity. Thus a kinematic boundary condition is

provided on the surface as



irrotational motion, this kinematic boundary condition becomes

~d 8q 3 8n

The dynamic boundary condition to he satisfied on the surface can

be obtained by applying the equation of motion in the vertical direction.

That is, by applying Bernoulli's equation for inviscid flow at y

in which g is gravitational acceleration and the pressure is taken to

be zero at the free surface.

If it is assumed that displacement of the free surface is small,

then the nonlinear terms in Equations �.4! and �.5!, being of the

second order in comparison with the other terms, can be neglected. Further-

more, since it is assumed that rl is very small, the boundary conditions

specified at the free surface y = rl can be considered to occur approxi-

mately at y 0, With these approximations, Equations �.4! and �.5!

become

~3 3q
ay ae

aty - 0

+ gn = 0 at y = 0.3 h

3t
�.7!

The fluid motion is specified by the Laplace's equation Equation

�.2! and the boundary conditions Equations �.6! and �.7!. By adopting

the following symbols:



a wave amplitude,

L wave length, distance between any two corresponding positions

on successive waves,

T ~ wave period, time required for motion to reoccur at a given

fixed po int,

wave number, defined to be equal to 2~/L,

and ~ wave frequency, defined to be equal to 2~/T;

it may be verified that if the surface displacement is

n x, t! a cos   ac - ~t!, � 8!

then the associated velocity potential is

P x, y, t!
a~ cosh ~ d +

sinh K d
sin  e< - mt!. �.9!

The frequency ~ is determined by the dynamical free surface condition

Equation �. 7! and is related to the wave number ~ by the dispersive re-

lationship

g~ tanh ~ d. �. 10!

Once the velocity potential g x, y, t! is obtained, components of

fluid particle velocities V  x, y, t! and V  x, y, t! can be calculated
x

from Equation �.1! . In later derivations, components of fluid particle

ively V  x, y, t! and V  x, y, t!. Here and hereafter, overdot is used toX

denote differentiation with respect to time.

accelerations are also required. Consistent with the assumption of linear

wave theory, by neglecting the higher order convective terms, the hori-

zontal and vertical components of fluid particle accelerations are respect-
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2.2 Random Waves

Waves in the real sea are quite different from the ordinary long-

crested waves of permanent form as described by the deterministic mathe-

matical wave theory in Section 2.1. This is especially true for the wind

generated waves in the ocean. When these waves propagate in different

directions with different amplitudes, lengths, periods, and phase angles,

the resulting surface is almost always random. Therefore, detailed des-

cription of the surface waves can not be achieved in a deterministic

manner in either space or time. The only alternative is to seek their

properties by statistical methods.

The most important one of all the commonly used statistical measures

is the wave spectrum which is the energy density function in terms of

wave frequency or wave number. However, in order to utilize the general

statistical theory on waves, several assumptions and their justifications

are given below:

l. Th wave field is assumed to be stationary and homogeneous. A

random process is said to be stationary  or homogeneous! if its probability

distributions are invariant under a shift of the time  or distance! scale.

The duration of time that the wind acts on the water is called the wind

duration. Ihe distance over which the wind blows is called the fetch.

Strictly speaking, the conditions of stationarity and homogeneity can

never be satisfied since sea state obviously depends on the duration and

fetch of a storm. The assumptions of stationarity and homogeneity can be

justified on physical grounds that the typical wave period is much smaller

than the duration of the storm, and the typical wave length is always

smaller than the diameter of the storm.
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�. 11!R~ z! = EI'X t!X t + ~! ]

in which ~ is the shift of time and E f ] denotes the expected value  or

mean! of the quantity enclosed in the bracket.

The spectraL density function  or spectrum! S~ e! of the stationary

process X t! is the Fourier transform of the auto-correlation function

R~ ~!

2. "'he free surface elevation is assumed to have a Gaussian  or

Normal! distribution. The Gaussian nature of the sea surface has been

observed by Kinsman �960! and can be explained by the Central Limit

Theorem  Crandall and Nark, 1963!. Under some general conditions, the

Central Limit Theorem states that a random process will be approximately

Gaussian if each of its sample functions can be considered to have been

generated by the superpositi,on of a large number of independent random

sources, no single one of which contributed significantly. Thus the

surface elevation might be considered approximately Gaussian when it is

due to th» superposition of an infinite number of random waves.

3. .'ince the origin of wave system is selected at the mean water

level  Figure 2.1!, the surface elevation will have zero mean.

If the surface elevation is stationary, homogeneous, zero-mean, and

Gaussian, then a complete description of this random process can be achieved

from knowledge of its auto-correlation function or its spectral density

function.

The auto-correlation function R~ v! for a stationary process X t!

is defined as
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S  e! R f R  w! e dT �.12!

in which i =-  -1! . Prom the Pourier inversion formula, it followsI/2

that R  r! can be expressed in terms of S   !!!

R, z! = f S  e! e de. �.13!

When T = 0, Equation �.13! becomes

RR, �! = I S  e! de E[X  e!! �. 14!

in which EtX  t!] is the mean square value of X t!.

If the surface displacement rl t! is considered as a function of

time only, i.e., measured at one fixed point, then from Equation �.14!

Etq2 t!] - S  a! dm
nz

�.15!

so that S   !!! can be interpreted as the density of contributions to
Qn

E[rl~ t!] per unit frequency interval. Since the mean energy per unit

spectrum

area of the wave motion is proportional to Etr
 t!]  Phillips, 1966!,

the ordinate of the spectrum S  v! is therefore a measure of the

"wave energy density" per unit frequency and unit. horizontal area.

The wave spectrum can be determined from actual field data  Kinsman,

1965!. In this study, the spectrum for a fully developed wind � generated

sea state described by the Kitaigorodskii �962! -Pierson-Hoskowitz �964!



0S  ~! = ~ exp I-g ~�], 0 < > <-
nn Vv

is used. In Equation �.16!, a and P are two dimensionless constants

with n ~ 0.0081 and 8 0. 74, and V is the mean wind speed. Any con-

sistent set of units can be used in the above formula. Since this

spectrum is defined only from zero to infinity, a slight modification to

redefine the spectrum over the frequency interval  -~, ~! can be made as

0S  z! exp [ � tn ~! 4f, � < ~   ~ �.17!
nn 2 R6J

where Iu>t is the absolute value of u, The points at which S  ~! is
nn

maximum are located at

w -+  � !4g 1/4
0 5

�. 18!

and the maximum value of S  ~! at ~ is
nn 0

cV' 4P -5/4 -5
S   u! = ~ { � ! exp   � ! ~

nn o g 4

N

n{x, t! = Z a cos ~ x � e t + K ! {2.19!

in which N approaches infinity and the random phase angles X are assumed

to be uniformly distributed over the interval {-v,~! and independent from

There are several statistical models to represent the visible state

of the random sea �orgman, 1972!. One frequently used model is obtained

by a superposition of an infinite number of sinusoidal waves of different

frequencies and amplitudes with random phase angles {Rice, 1945!. Thus

the sea surface displacement n x, t! can be written as
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component tr component. Using the deterministic relationship between

the amplitude and the energy contained in the wave at corresponding

frequency  Pierson, 1955; Borgman, 1972!, it is convenient to represent

the above equation by the "pseudo-integral"

1I  x, t! ~ [2S  >! dv] cos   ~ x � vt + X! . �. 20!1/2
en

It can be seen that the statistical nature of the confused sea surface

is taken as arising purely from the random phase. If the model of

Equation �.20! is adopted, then the potential function, fluid particle

velocity, and fluid particle acceleration of the random wave field are

readily found by comparing Equation �.20! with the results obtained from

single wave in Section 2.1. That is,

0 x, y. t! -j l2S  ~!d~]I/2 Siil  K x � Bt + A!

�.21!

r sinh v d

V [2S  ~! du! ]
x

Cos   K X � ddt + 1!
sinh ~ d

�.22!

V [2S  v!d~]
y �nn

sin  ~ x � u!t + X!
sinh ~ d

�. 23!

I CO

V ~ [2S  ~!du!]
1/2

x
sin   v x � zt +X!

�.24!

sinh ~ d
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where Cov  X, Y! is the covariance of X and Y, if it is assumed that

X and Y have zero means.

The general procedure of obtaining cross-spectrum for waves is

velocity at point g. If the component is in a direction parallel to the

x-axis, then

v cosh K  y + d!
V  x , y , t! = [2S  <o!dm]nrem sinh ~ d

sin  ec. � mt. + X!, g//x �-30!

where the symbol // means parallel to the corresponding coordinate

axis that f ollows. Similarly, V  x, y, t + r! denotes the component

of fluid particle velocity at point k, but with a time lag ~. If it is

in a direction parallel to the y-axis, then

1/ 03 s inh ~  y + d!
 x, y, t + ~! = [2S  u!d+]

sin  ec�- vt - vz + X!, k//y . �. 31!

Prom Equation �. 26!, the cross-correlation function R ~  T!
k

can be found by taking the mean of the product of V  x, y,, t! and
j

Vk x�, y, t + ~!. That is

R ~  'T! ~ X[V. x, y, t! V  x, y, t + T!], ]//x
j k k//y

given below. Let V  x , y , t! denote the component of the fluid particle
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cosh e  y. + d! cosh e  y + d!
 ~! = S  w!

k nn sixth v. d

cos [~  x � x ! + w~]dw, j//x
k//x

�. 32!

cosh ~  y, + d! sinh ~  y + d!
k

2
sinh v d

sin [ ~  x � x ! + w.~]dw, j//x
k//y

�. 33!

sinh e  y + d! cosh ~  y + d!

2
sinh e d

sin [v  x � x ! + wr]dw, j//y
k//x

�. 34!

R:. ~  ~! = S  w!
v V

sinh ~  y, + d! sinh ~  y + d!

sinh ~ d
2

�.35!cos [ ~  x. � xk! + w~]dw , j//y
k//y

Foster �967! developed several simplified forms of the cross-

correlation function for fluid particle velocities by considering the

statistical properties of the random phase A. These cross-correlation

functions are listed below.'
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The cross-spectral density function S. '  v! corresponding to
k

R'  ~! can be obtained fram Equation �.27!
j k

 ~j ~ f R  ~! e "' dr . �.36!
k j

cosh « y + d! cosh « y + d!
ST '   g! ~ S  g!

V V nn s inh 2

em[i« » - g!], j//x
k//x

�. 37!

cosh « y + d! sinh « y + d!
SV V 'e S 2

sinh «d

exp [i « x � x ! ], j //»
k//y

�. 38!

sinh « y + d! cosh « y + d!
SVV  ! =S  !VjVk nn 2

sinh «d

�. 39!exp[i« x - x !] , j//y
k//x

sinh «  y + d! sinh «  y + d!
S;  !=S  !V Vk qq 2

sinh «d

exp[i« x - x !], j//y
k//y

�.40!

The integral on the right hand side of the above equation was

carried out by Foster �967! and the cross-spectral density functions

for fluid particle velocity are given below:



19

Since the random process V x, y, t! is stationary, the cross-

correlation functions such as ~, R" and R-" can be easily derived

in terms of R  w! by the relationship  Papoulis, 1965!

! n+m!
R   !, m!  ~!   1!   ~! RV V  T! � 4l!

V V BT j k

in which n and m denote the order of derivatives. Thus,

 <! = � Q ~  <!3

k j k
�.42!

a.  T!R" ~  ~! = � � v V
VV 3t j k

�.43!

a'
"VV' " -~~, "VV

k j k
� ~ 44!and

be obtained in terms of ST  z!. That is,
j k

�.45!SV V  ~! = i~S; ,  ~!
k k

�.46!'V V  "! = -i.S, -  .!
j k k

S" "  m! ~ GJ S ' '  m!
k k

�. 47!and

Using Equation �.27! as the definition of Fourier transform,

4
the cross-spectral density function of the derivatives of V can also
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2 ~ 3 Currents and Wave-Current Interactions

Since currents have many effects on. the ocean environment, they are

of special i~portance to the ocean engineer. For the present study, ocean

currents can contribute to drag forces which are proportional to the square

of the fluid particle velocity. The American Petroleum Institute Specifi-

cation �975!, which governs the design of fixed offshore platforms,

recommends that due consideration be given to the possible superposition

of currents and waves in some areas.

Examination of various discussions on currents  Ippen, 1966; Nyers,

1969! shows that ocean currents can be classified into several groups

according ta the way currents are generated. They are:

1. currents related to density distribution, such as the Gulf

Stream and the kuroehio,

2. tidal currents, caused by the astronomical forces of the moon

and sun,

3. currents related to wind stress, caused by the effect of wind

blowing over the ocean,

4. wave-induced currents, or the so-'called mass � transport velocity

in finite amplitude wave theory, and

5. local currents, caused by the discharged water from rivers.

Because surface waves belong to a particular group of motion in which

the fluid particles are organized in such a way as to show the oscillatory

surface elevation, any concurrent motion in the fluid will produce inter-

actions; for example, wave-wave interactions  Phillips, 1960, 1966! and

wave-current interactions  Taylor, 1955; Ursell, 1960!; Witham, 1960, 1962;

Longuet-Higgins and Stewart, 1960, 1961!. From these interactions, certain
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changes in wave characteristics will arise such as changes in the wave

amplitude  Longuet-Higgins and Stewart, l960, 1961! and phase speed

 Longuet-Higgins and Phillips, 1962; Phillips, 1966! ~ Thus when the wave

propogates into a region of local current, the wave amplitude decreases

and the wave length increases if the current and the wave are in the same

direction  Longuet-Higgins and Stewart, 1961!. However, if the current

and the wave are in opposite directions, then wave amplitude increases

and wave length decreases.

In a random wave field, influence of wave-current interactions on

some statistical properties of waves has been studied by Huang et al.

�972!. It was shown that in deep water the wave number K, under the

influence of a steady current, is related to wave frequency ~ by a

general dispersion relationship  Huang et al., 1972!

44!
�.48!g K 4V a! 1/2

f1+ �+ '! ]
g

in which V is the current velocity and 8 is the gravitational accelera-

tion. It is seen from Equation �.48! that when the current is in the

direction of waves, i.e., V > 0, the value of ~ is less than that when
C

there is no current, indicating that positive current increases the

wave length. The dispersion relationship of Equation �.48! is plotted

in Figure 2.2 for different values of V . The dotted line indicates
C

the theoretical limit when the group velocity of waves is equal to the

negative current velocity. No wave can exist beyond this line. In fact,

waves will break long before they approach this limit because the wave

amplitude would be infinite at this critical velocity.
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4S  ~!
znS  m!

4V u> 1]2 4V ~ 1~2 4V e
Il+ �+ ! ] [�+ ! + �+ !!

g g 8

�. 49!

in which S  ~! is the frequency spectrum of surface waves without the

influence of current. The spectra S  ~! for various values of current

speed V are plotted in Figure 2.3 by using the Kitaigorodskii-Pierson-
c

Noakowitz spectrum  Equation 2.17! with a mean wind speed V 50 ft/sec.

Figure 2.3 shows that when the current is in the direction of the waves,

V > 0, the surface spectrum is lowered. This is because positivec

current tends to lengthen the waves thus reducing the energy level of

the waves. An the other hand, adverse current steepens the waves and

feeds energy into the wave system; therefore, the surface wave spectrum

increases in magnitude. It is noted that when current velocity is

negative, there is a cut-off frequency in the surface wave spectrum.

This cut-off frequency is determined by

4V

1+ >0
g

�.50!

which is implied in Equations �. 48! and �.49! . As mentioned earlier,

before this cut-off frequency is reached, waves with frequencies in the

vicinity of the cut-off frequency become very steep and eventually break.

Hence the spectrum should be terminated before the cut-off frequency.

It was also shown  Huang et al., 1972! that under the action of

a steady' current, the frequency spectrum S  v! of surface waves of an
nz

unidirectional stationary gravity wave field in deep water can be obtained

from
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Since the wave spectrum is obtained from field data, therefore,

actual ocean environment at the field must be observed while these

wave data are being measured. Zf a wave spectrum is obtained without

the presence of externally generated current, then Equation �.49! should

be used to modify this spectrum for consideration of possible wave�

current interactions effects
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3. DYNANlC RESPONSE OF STRUCTURES

3.1 Wave and Current Forces

The most commonly used formula for the estimation of wave force

on a vertical cylinder is the Morlson formula  Morison et al., 1950!.

The formula states that the hydrodynamic force exerted on a vertical

cylinder consists of two components. One component is the drag force

which is proportional to the square of fluid particle velocity. The

other component is the inertia force which is proportional to fluid

particle acceleration.

Thus the wave force dF t! on an element of a vertical cylinder of

length ds  Figure 3.1! is

dF t! = Cy ~ V t! ds + M pDV t! ~V t! de

in which D is cylinder diameter, p is density of sea water, C and CM

are respectively the drag and inertia coefficient, and V t! and V t! are

respectlve1y the horizontal components of fluid particle velocity and

acceleration of wave � at the point under consideration and in the di-

rection of wave propagation. The usual assumption that the presence

of the structure does not alter the wave field is made in this study.

The appropriate use of Norison's formula depends primarily on the

choice of the numerical values of drag and inertia coefficients. These

empirical coefficients are estimated from laboratory and field investi-

gations. Methods for estimating C and C by either deterministic or

statistical approach are presented in the work by Borgman �972!. Al-

though there are considerable scatters among published results  Wilson
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Fipure 3.1. Horizontal ~~ave forces on a vertical circular cylinrter.
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and Reid, 1963, Myers, 1969; Trasher and Aagaard, 1970; Dean and

Aagaard, 1970; Wheeler, 1970; Evans, 1970! for drag and inertia co-

efficients, C and C are normally considered constants having values

in the ranges 1.0 < CD < 1.4 and 1.4 < C < 2.0  Wiegel, 1964!. To be

consistent with the previous study  Penzien, Kaul and Serge, 1972!,

C and C are assumed constant and the values of 1.4 and 2.0 are se-

lected respectively.

In the presence of a steady current, the Morison formula can be

modified by including the contribution of current on drag force  Wiegel,

1964; Borgman, 1972!. That is

dF t! = Cg V t!ds + M pD V t!+V ! ~  V t!+V ! ~ds
�-2!

where V is the velocity of steady current. In Equation �.2! it is
c

assumed that values of C and C do not change in the presence of a

steady current.

From Equation �.2! it is seen that in the presence of a current,

the drag force can not be considered simply as the sum of drag force

due to current

2 CDpDV IV lds1

and drag force due to waves

� G pDV t! ~V t! ~ds .
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Furthermore, when the phenomenon of wave-current interactions is

considered, the fluid particle velocity V t! and acceleration V t!

should be modified accordingly.

3.2 Equations of Motion

The offshore tower is a continuous structure with an infinite

number of degrees of freedom. For dynamic analysis purpose, it is

convenient and usually adequate, to represent such a structure with a

lumped mass model consisting of discrete masses located at selected

nodal points. Figure 3.2 shows such an idealized model of an offshore

tower. The dynamic equations of motion for this model can be written

in matrix form as

[M] {U t! ! + [C] {U t! ! + [K] {U t! ! = {F  t! ! �. 3!

in which tM] is the diagonal matrix of masses lumped at nodal points,

[C] and [K] are the structural damping and stiffness matrices, respect-

ively. {U t!!, {U t!!, and {U t!I are column vectors of nodal accelera-

tions, velocities, and displacements, respectively, and {F t!! is a

column vector of forcing functions acting on the nodal points. In this

study, it is assumed that the waves travel in the positive x direction.

All structural and loading variations in the z direction are therefore

neglected in Equation �.3!. Thus, the number of degrees of freedom at

each node is reduced to three; namely, translational displacements in

the horizontal x direction and in the vertical y direction, and rotational

displacement about the z � axis.



Figure 3.2. Idealized tower.
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The '=orces considered in Equation �.3! are those due to wave and

current on1y. With the effect of fluid structure interaction included,

the drag force, according to Norison's formula, can be expressed as

> CD~[A ]  < + v � v! I >+ < � U! I! ~ <3 4!

movements

IM] U!

2. 'I.'he inertia forces induced on the lumped masses by the masses

of the fluid displaced by the lumped masses

p[v]/v! �. 6!

where the elements of the diagonal matrix [V] represent the enclosed

volumes of structural members lumped at nodal points, and  Vj are fluid

particle accelerations at nodal points.

3. 'I'he inertia forces due to added mass  Nyers, 1969! based on

relative acceleration between the lumped ~asses and surrounding fluid

Here and hereafter in this dissertation, the argument t of these time

dependent quantities is dropped for convenience, except when a time

dependent quantity first appears. In Equation �.4! the elements of the

diagonal matrix [A ] represent the pro]ected areas of structural members
P

lumped at nodal points and perpendicular to motion of fluid.

Ry considering the effect of fluid structure interactions the

inertia forces of the lumped masses moving in accelerating fluid may be

divided into three parts  Chakrabarti, 1971!:

1. The inertia forces of the lumped masses due to their own
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Therefore, the total forces  F t! ! due to waves and currents on

the lumped masses, in x-direction, can be calculated by combining

Equations �.4!, �.6!, and �. 7! . Substituting  F t! } into Equation

�.3!, the equations of motion become

[N] U.' + [C] U! + [K] U! = p [V] V} +  C � 1!p [V]  V � U! !

+ � C~ [a ]   V + V � U! i  V + V � U! ~ !
2 p C c

�.8!

In Equation �.8!, the fluid particle velocities and accelerations

should be those at the instantaneous deflected position of the structure.

However, for frequency components of the input forces near the funda-

mental frequency of the structure system, i.e., for small wave number

~ the wave length L will be large, the wave particle velocities V and

accelerations V may be evaluated at the original undeflected structural

coordinate with reasonable accuracy.

3. 3 Equivalent Linearization Technique

By introducing  r  t! ! =  V t! ! �  U t! !, the relative velocities

between fluid particle velocities corresponding to wave motion and ve-

locities of structural nodal points, the equations of motion  Equation

�.8!! are changed to
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IM ] lr t!! + tC]{r t!! + 2 C~ptA ]{ r t! + V ! i r t! + V ! i!

+ {K]{r t!] - {f t!! �. 9!

in which j.M ] = [M] +  C � 1!p fV] is a diagonal matrix of the sum
s M

of structural and added masses, and {f  t! !  [M] � o {V! ! {V! + {C] {V! +

!K]{Vj is an effective forcing function which is independent of {r j.

Equation �.9! is a set' of nonlinear stochastic differential equations.

These equations may be linearized through an equivalent linearization

technique  Krylor and Rogoliubov, 1943; Lin, 1967!. The essence of

this technique, employed by Malhotra and Penzien  l970!, is to replace

1the nonlinear term � C p I.A ]{  r + V !  r + V ! i ! by a linear term by
2 U p c c

altering damping coefficients in an "optimal" manner. <lith the pre-

sence of currents in this study, this technique can still be applied.

However, some modifications are necessary.

Let the linearized form of the i element of { r + V !~ r + V !~!
c c

i i V !l i+ V !l ai'i+ �. 10!

Zn order to minimize the error E in the mean square sense, it

requires that

BE

F[ ]-0
Ba

BE 2

and E[Bb ] = 0
i

�. 11!

i.e.,  i'i + V ! i  ri + V ! i be a r + bi. Then the error E introduced
c i c i i i i

by this approximation is given by
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Substitution of Equation �.10! into Equation �.11! yields

2E[»i - r  r + ~ 	 r'i+ ~ !! + b r j 0i i

2E[b + air �  ri + V !!  r, + > !! ]

From these two equations a and b can be obtained

E[ri ri + V ! l  ri + V
�.12!a

i E[r ~]

b - -a Ejr ] + E[ r. + > !!  » + < ! I]
i i i i c i c

�. 13!

[C] - [C] + 2 C~ [A ][a] �.14!

in which the coefficients of [C] are given by

E[ri«i + ~ !!  » + ~ !! ] � biE[ri]i i c i c i i

E[r 2]
C + 2CDPA

1

�.15!

The vector   r + V !!  r + V !! ! in Equation �.9! can now be re-
c c

placed by the vector [a]$r! +  b!. Elements of the diagonal matrix [a]
and the vector  b! are those in Equations �.12! and �.13! respectively.

When the damping terms of coefficients of  r j in Equation �.9! are

combined, an optimal damping matrix [C] is formed,
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The linearized version of the equations of motion in Equation

�.9! thus becomes

[M j r! + [C]{r! + [K]{r!  f t! ! � 2 CDp[A ]{I! . �.16!

It is seen from Equations �.12!, �.13! and �.1S! that the ele-

ments of the matrix [C] and the vector  b! depend on the statistics of

the solution  r!. In the following, explicit expression of [G] in terms

of the statistics of  r! is given.

It is well known that the sum of a number of zero mean Gaussian

processes is also zero mean Gaussian. Therefore, as seen from Equation

�.9!, the input forcing function {f t!! is a zero mean Gaussian process

It is noted from Equation �.16! that the response vector  r! consists

1of two parts, one due to the constant force 2 CDp[A ] b!, and the other
P

due to the input zero mean Gaussain process  f t! !. That is

 r t! ! =  r  t! ! +  rf  t! ! �.17!

in which {r  t! ! represents the response vector due to the constant
c

farce � C t: [A j b! and  rf t! ! the response vector due to  f  t! !.1

P

Taking derivatives of Equation �.17! with respect to time t gives

 r t! ! = {r  t! ! �. 18!

The expected values of  r! and  r! are obtained from Equations �.17!

and �. 18! respectively. Since the input   f  t! ! is a zero mean Gaussian

process, the linearized output process  r  t!! is also a zero mean

Gaussian process. Hence it is concluded from Equation �.3.8! that the
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relative velocity vector  r] is a zero mean Gaussian process. The
th I

probability density function for r, the i element of  r!, is

1erat-2 , !]
i

�.19!

in which a is the standard deviation of r
i

With the probability density function of r known, it is possible
i

to evaluate the expected values of the terms shown in Equations �.12!

and �. 13! . For example,

r  r +V!
i i cEir  r + V !I r + V !I] 1/2i i c i c � 	/2

i

2

I  r + V !i exp[- �   ! ]dr
ri

�. 20!

After the integration on right side of Equation �.20! is carried

out, the expected value is obtained as

S 1»
i+ V ! I ri+ V ! I] =  -!

+ �1T! V
c

in which erf   ! is the error function defined by

erf  u! � Q ! exp - � v ! dv.-1/2 1
hp

�.22!

l

�m! a.
i

V

 a ~ exp'- � g ! ]
r 2

V

erf   !! �.21!
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-1/2 1 c V
Similarly, E[ r + V !~ r + V !~] = 2 {�~! o V exp [- �   ! ]

i c i c r c 2 0'
i

V

 o. 2+ V 2! erf  !!
Y c 0

i

�. 23!

The optimized damping coefficients [C] in Equation �.15! can now

be expressed in terms of o by substitution of Equation �.21! and
i

noting that E[r ] 0 and E[r ] o
i i r

2 1/2 1 cC + C pA { ! o exp[- �  '! ]
ii U p, m r 2 0 ~

i
i

V

+ 2V erf  !!

i

i=j

� ' 24!

Similarly, substituting Equation �.23! into Equation �.13! gives

�.25!

Since values of o can only be calculated from the solution of
r

Equation �.16!, an iterative procedure is necessary for the solution

of the linearized equations of motion. The iterative procedure can be

1carried out by first substituting trial values of cr ~  denoted by a !
r r

-l/2 1 c V

b = 2{�~! o. V exp[- �   ! ]
i r c 2 U ~

r

2 ~ V
+  o +V ! erf '!!

r c 0'

i
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in Equation �.24! to get the first trial damping matrix IC] ~ The1

equations of motion can then be solved and the modified a ~ and jC]
i

are obtained to complete the first cycle of iteration. This process

may be continued until covergence is achieved after N cycles, i.e.,

the iteration process may be terminated when

IC] =- "tC! �.26!

For those case studies examined in Chapter 4, the rate of convergence

is fast and only very few iteration cycles are needed.

Substituting back the previously defined relation  r! =  V! �  U !

in Equation �.16! to determine the structural response, one obtains

fM ] V! + [C] U! + tK] V! = + tV] V! + [C] V!+ 2 ~!A ] b!

�.27!

in which tC,'! is defined as

tC] - [C] �  C] . �.28!

3.4 Transformation of Coordinates

Most structural systems are subject to constraints which may result

from relationships among forces, or result from relationships among dis-

placements, i.e., kinematical constraints. Members of structure are

generally not equally flexible with respect to all axes, hence in systems

it is sometimes appropriate to neglect certain deflections which are
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mall when compared with others. Thus, constraints may be introduced

because of certain idealizations which may be made for convenience of

analysis. Xn performing numerical dynamic analysis, it is important to

reduce analysis costs by reducing the number of dynamic degrees of

freedom. Two general approaches have been used effectively to reduce

the dynamic degrees of freedom  Clough and Penzien, 1975!. The simplest

is based on the assumption that inertia forces are associated with only

certain selected degrees of freedom of the original idealization; the

remaining degrees of freedom are not explicitly involved in the dynamic

analysis and can be condensed from the dynamic formulation. In the

second approach, the number of dynamic degrees of freedom is limited by

assuming that the displacements of the structure are combined in selected

patterns, the amplitudes of which become the generalized coordinates of

the dynamic analysis.

To illustrate how independent degrees of freedom are selected from

constraint requirements in this study, consider the idealized offshore

tower shown in Figure 3.1. Since the orientation of the flow is assumed

in the direction of the x-axis, the analysis can be treated as two-

dimensional and only the horizontal displacement U t! at each nodal point

is the quantity of interest. This is because the wave forces are different

at the nodes on each floor level and consequently should be computed

separately. If the axial deformation such as the relative elongation

between nodes 1 and 2 is neglected, then the equation of constraint U � U

0 is introduced. Thus in solving the linearized set of differential

equations Equation �.27!, the dependent displacements {U t! ! at nodal

points are first used to estimate wave forces. Then a transformation from
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the N  N 10 in this example! dependent displacements {V t!! to the

L  L = 50 in this example! independent displacements {X t! ! is made.

That is

{U t! ! = [A] <X t! !

Nxl NxL Lxl �.29!

where fA! is the transformation matrix with N rows and L columns. In

this example  Figure 3.1!, there are ten dependent horizontal displace-

ments {U! at nodal points and five independent horizontal displacements

{X! at floor levels. Equation �.29! thus becomes

l 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 1 0

0 0 0 0 1

0 0 0 1

U

U �. 30!

v

U9

Substituting Equation �.29! and its corresponding derivatives into

Equation �.27!, and premultiplying Equation �.27! by I.A]  transposeT

of [Aj!, results in
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[M ' X t! ! + [C ]  X t! ! + [K ] X t! !  P  t! j. �. 31!

in which

[M ] = [A] [M,][A]

[C'] = [A] [C] IA]

�.32!

= [A] I<][A] + [A] [<][A] <3.33!

[K ] = [A] [K][A] �.34!

and

 P  t! j = IA]  C p [~] ~! + [C] ~! + � Cy [A ]<b!! � 35!
2 p

Thus, N equations of motion in Equation �.27! corresponding to the

N dependent displacements  U! have been reduced to L equations of

motion in Equation �.31! corresponding to the L independent dis-

placements  X!.

3.5 Normal Node Superposition

After the transformed set of equations of motion Equation �.31!

is obtained, the method of normal mode superposition can be used to

calculate the response and response statistics of the structure. The

response of the structure is given by

 x t! I = [~]h" t!! �, 36!

in which  X t!j is the independent displacement vector of the structure,
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{Y t! ! is the generalized modal coordinate vector, and [g] is the modal

matrix obtained from the undamped and homogeneous form of Equation �.31!

by the following equations for eigenvalues and eigenvectors.

[K][e] = IM ][~]t �] �.37!

where [~ is a diagonal matrix of all eigenvalues m  n ~ 1 to L!.2- 2
n n

th
[$] is a square matrix containing all eigenvectors such that the n

th
column is the set of modal displacements for the n mode corresponding

2 thto the eigenvalue e . Hence the element g represents the i modal
n

[M ]{Y t! ! + [C ]{Y t!! + [K ]{Y t! ! ~ {P  t!! �.38!

in which [M ] = [4] [M ][4]

�.39!generalized mass matrix

[K*] = [e] [K ][>] - [~� ][M ]

�.40!generalized stif fness matrix

ic ] = [4] [c ][4]

�. 41!= coupled damping matrix

displacement in the gt normal mode.

By substituting Equation �.36! into Equation �.31!, premultiplying

Equation �.31! by [$]  transpose of [g]!, and using the orthogonalityT

properties of normal modes, the equations of motion can be expressed in

terms of the generalized ~odal coordinate vector {Y t!! as
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 P* t! ! [Q] {P  t! ]

generalized fluid force vector. �.42!

�.43!

in which [C ] is a diagonal damping matrix and  E ! is an error vector.

To minimize the mean square value of each term in {E'I, it requires

GE. L

E[ ~ ] ~2E[ Z C Y~-C Y.! Y !] = 0
3C k 1 jk

Both the generalized mass matrix and stiffness matrix are diagonal

matrices due to the orthogonality properties of normal modes. The

original structural damping matrix [C] in Equation �.3! is selected to

satisfy the orthogonality condition for a structure vibrating in air

 Wilson ani Penzien, 1972! . Detailed derivation of the structural damp-

ing matrix [C] from specified modal damping ratios Is provided in Appendix

7.1. It s'.could be noted that the damping matrix [C ] is not a diagonal
o

matrix, since C are evaluated through the optimized Equation �.24!.

The coupling between damping in the various modes due to off-diagonal

terms of [C ] must be removed to have an uncoupled set of equations of
0

motion. The procedure used to obtain an optimized diagonal damping matrix

[C*] is similar to that used to obtain [C] in Rection 3.3. That is, let
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from which the coefficients of [C ] are obtained

L E[Y Y ]
C I Z C

kl lkktY
�.44!

It can be seen that the above optimization also requires itera-

tion, since the mean products of the generalized response quantities

determination of C is similar to that for C

The error vector  E ! can now be dropped from Equation �.43! so

that the coupled damping matrix [C ] can be replaced by the diagonal
0

matrix [C in Equation �. 38!

[M ] Y! + [C ] Y! + [K ] Y! ~ fP ! �. 45!

which is a set of uncoupled linear differential equations and can be

written in the standard form as

1 kkk k k

2 k k ~ 1, 2,..., L �.46!

in which

�. 47!

Y and Y must first be determined, which in turn depend on the solution

of the structural system. Therefore, the iterative procedure for the



{~k~ [A]  + [V] {V! + [C] {V! + 2 Cg [A ] {b!! �.48!

kk
*

k k

�.49!

and ~ is the natural circular frequency of the k mode.th

The solution by the Duhamel integral is of the form

Y  e! = j v� r.-~!g ~!d~ k ~ 1, 2,..., L �.50!

in which

h  t! �exp -<k<u�t! sin m t!1

k dk

�. 51!

th
is the unit impulse response function for the k mode and

�.52!

th
is the damped natural circular frequency of the k mode.

Generally, the solution of Equation �.46! can be obtained by the

use of an impulse response function together with the Duhamel integral

in the time domain, or by the use of a complex frequency response

function together with the Fourier integral in the frequency domain

 Crandall and Mark, 1963!.



The solution by the complex frequency response function approach

is of the form

2  t! - �t! f H  e! e de J P* t! e dt �.33!

where

1
H   !!!

g ~ -~ +2i<~~!
�.54!

is the complex frequency response function, or the transfer function of
th

the system for the k mode.

It has been shown that h  t! and H   !!! are related by

H e! - f h  t! e dt �.55!

3.6 Statistics of the Linearized and Transformed System

Since the stationary Gaussian nature of the input force in Equation

�.27! does not change through linear transformations of coordinate, the

output of the linearized and transformed Equation �.31! is also a

stationary Gaussian process. The desired statistics of some responses,

such as displacement, shear, and moment, can be obtained through the

evaluation of their variances and mean values, respectively, for Gaussian

processes.

Once Y  t!, k = 1, 2... ~ , L are determined, the independent displacement

vector  X} can be found from Equation �.36! or by combining modal contri-

butions from selected first few modes.
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L

'k'k"'
k=l

�.56!

For example, if 2  t! represents the independent displacement X  t! at

node i, then it can be seen from Equation �.36! that

L

Z. t! - Z y�Y  t! .
k=1

�.57!

Hence the coefficients 8 in Equation �.56! are equal to >I> of the

modal matrix [g] in this case,

The auto-correlation function R  T! for the stationary process

z  t! is

L L

E Z B B E[Y  t!Y  t + x! ] . �.58!
r=l s~l

s r s

For general application purpose, let Z t! represent some response

quantities of interest, e.g., displacement, shear, and moment at some

location. The general response function Z t! at certain location can

be described by the generalized coordinate Y  t! through some known co-

efficients B , k = 1, 2,..., L. That is
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Substitution of Equation �.50! into the above equation gives

L L DD CD

R� ~!- Z Z BB E[ P* t � e !P* t + ~
r s r 1 s

r lsl DD DD

e2!h el!h�2!delde2]�59!

where e, e, and T are dumray time variables. Next, interchanging the

order of integration and expectation in Equation �.59! snd using the

fact that for the two stationary processes, P* t! and P* t!,
r s

E[P  t � 8 !P* t + x � e !] is gust the cross-correlation function
r 1 s 2

R +P* y � B2 + &1! with a time lag of r � e2 + ~1, one obtains
r s

L L VP DD

REE c! = E E R R I   h  CE!h  eE!R *Zc
r=l s=l -~ � r s

e2 + el!delde2 �.60!

The spectral density function S  z! of the process Z t! is the

Four ie r t rans f orm o f RZ Z  T ! That is,

1 L L CD lXl CD

zg  !   ! ~   j!h   2!
r=l s=l � DD CD

q*P*  e2 + el! deld82  > 61!
r s

By using the known relation between hk t! and H  z! in Equation �.55!,
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the above equation becomes

L L

ZZ ! ~ ~  !  ! P*P !
r~l s~l

rsr s
r s

�.62!

where H  ~! is the complex con!ugate of H  ~!.
r r

To calculate R>  T! and S  ~!, the cross-correlation function

R *p« r! and the cross-spectrum S «« z! should first be determined
r s r s

from the forcing function in Equation �.48!. That is,

P* t! - [0 ! {P  t! ! �. 63!

P* t + T! = {P  t + r!!{y !
8 8

�.64!

By definition,

R,«p* .! - E[P  t! * t+ T!]
r 8

= � ! E[{P  t!!{P  t + ~» ] 0 �.65!

Rp*p« r! {'js ! [ p p   !]{0,!T

r s

�. 66!or

The forcing function {P ! is given in Equation �.35!. Therefore,
a

the matrix [R a a T!] in the above equation is expressed as

[RP p  <! ] E[{p  t! !{p  t + <! ! ]

th
where {$ ! is the column vector corresponding to the r mode shape.

r
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- [A]  ~ [V] [R-- ~! ]~ IV] + [C] [a Z T! ] [C]

+ Cg[v][R-- T!][c] + [c][R - <!]+[U]

+ � C p[A ! b! b! � Cg [A ] ! [A].
2 3 p 2 p

�.67!

After taking the Fourier transform of Fquation �.66!, the cross

spectral density function of the forces is given by

*  [   !]<
r s

�.68!

trans f orm o f Kquat ion �. 67!

s  !] = [A!  CNp [>][8--  !]~I>] + [C]IS''  !]Ic]

+ C� [V][S-.  	[C] + [C][S "  !]~ [V]

+ 2 C>p[A ] b! b! 2 C p [A ]< u!!! IA] �.69!
P 2 D p

where 6 u! is the Dirac delta function defined by

f ~! 5 u!! d~ - f�! �.70!

in which [S � * ~!] can be obtained similarly by taking the Fourier
P*P

r s



[  t!j = RZZ�!

EIZ  t!! = SZZ  !d �.72!or

To find the variance of Z t!, i.e.,

oZ = E[Z  t!] � E [Z t!!. �.73!

it is necessary to determine the expected value E[Z t!] of Z t!.

E[Z t! ] can be obtained by taking expected values of both sides of

Equation �.56!.

L

E[Z t!] E 5 E[Yk t!]
k 1

�.74!

in which E[Y  t!] can be found by taking expected values on both sides

In Equations �.67! and �.69!, values of the cross-correlation

functions and cross spectral density functions for fluid particle

velocities, such as R ~  t! and S '  ~!, are given in Equations �.32!

to �.35! and Equations �.37! to �.40!, respectively. Those cross-

correlation terms for fluid particle accelerations, such as R"" x!

and S" ~  x!, can be expressed in terms of K'' T! and S~ ~  e! as indi-

cated in Equations �.42! to �.47!.

When the expressions of RZZ T! and SZ  ~! are determined, the

mean square value of the response quantity Z t! can be found from either
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of Equation �.46!. It is noted that in Section 3.3, the relative

velocity is defined as r V � U, which implies the relation
4

E[U] = E[V] � E[r]. It has been shown that K[V] = 0 and E[r] 0,

therefore E[U] and consequently E[U] are all equal to zero. Since

the vector {Y} is derived through linear transformations of Equations

�.36! and �.29!, it follows that E[Y] = 0 and E[Y] = 0. Considering

the above statements and taking the means of Equation �.46!, one ob-

tains

E[Yk t! ] - s 2 {4k} [A] 2 CD [A ] {b } �. 75!

called that in the solution procedure, the response quantity a ~ must

be evaluated to determine [C] and {b} as shown in Equations �,24!

and �.25!. Both [C] and {b} appear in Equation �.27! which is the

linearized version of Equation �,8! governing structural responses.

Also, the solution of the linearized Equation �.27! by the normal mode

superposition method requires the replacement of the coupled damping

matrix [C .' in Equation �.38! by the diagonal damping matrix [C ]
0

which depends on knowledge of the response quantities E[Y  t!Y  t! ]

as indicated in Equation �.49!. Both the quantities a. and
i

E[Y  t!Y  t!] may be derived in much the same manner that statistics of'

3.7 Parameters for Optimizing Damping Coefficients

Sections 3.3 to 3.6 formally conclude the discussion of the method

of solution of the nonlinear differential equations Equation �.8! by

means of the equivalent linearization technique. However, it is re-
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response quantity Z t! is obtained, although the detailed results

differ. These derivations are briefly explained in the following.

It is seen from Equation �.50! that the cross-correlation func-

tion R  T! of the generalized coordinate Y  t! and Y  t! is
k

R� T! = f R[P!  8 � 8>!PR 8 + ~ � 83!h!  83!hh 83!88>883jYk aa CO

h  8 !h  8 !R * 8 r � 8 + 8 !dd dd . �.76!
1

j k

The cross � spectrum SY Y   !!! of the process Y  t! and Yk t! is
k

the Fourier transform of the above equation

S  u!! H  ~!H� u!!S * * u!!
k j k

�.77!

in which .' e + z! is given by Equation �.68!.
k

By acopting the known relations in Equations �.44! and �.47!,

�.78!

S-,  .! = .>SY Y  .! .
j k k

�. 79!and

R ~  r! and S ~ ~   !!! of the process Y.  t! and Y  t! are respectively
k j k
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Thus, the quantity E[Y  t!Y  t!] can be evaluated by

],']Y  t!Y� t!] = R�. �! = I ~' s�� M!d~ . �.80!
~ k k

To evaluate the response quantity o, it is necessary to use
i

the definition of relative velocity

r  t! V  t! � U  t! �. 8l!

The auto-correlation function R ~ ~  z! of the relative velocity is
r r

therefore given by

R ~  r! = E[r  t!r  t + r!]

= R- .  ~! + R�.  ~! � R�  r! � R -  r! �.82!

{U! = [A] {X! = [A! []II]] {Y! = [W] {7! �. 83!

L

U  t! = E W Y  t!
k= l

�. 84!or

L L

R' ~  t! E Z W W. R  r!
ilk=1 ki

�.85!Hence

in which R ~  r! is given by Equations �.32! to �.35!. R�U  r!

can be evaluated from Equations �.29! and �.36!. That is



The last two terms af Equation �.82! can be written respectively

as

L L

 v! = E W E[Y  t!V  t + t!] ~ E W R ~  r! �.86!
k~1 k~1 k g

and

L L

R  v! = E W E[V  t!Y  t + v!]= Z W R- -  x! . �,87!
] j k 1 k l ] k

Thus, Equation �.82! becomes

L L

R. ~  ,! R ~  T! + Z Z W .w R  ~!
] ] ] g i=lk=l ki

L Z Wk[R V  !+RVV
kl ~k]!k

�,88!

k k !

�.89!in which

�.90!

in which [M] [A][g] is a matrix with coefficients similar to B of

Equation �.56!.
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and R ~  r! = E[ hk 8!Pk t � 8!d8 V  t + ~! ]
k j CO

- <I   g <!<4y> tAI  ~ Ivi<v < - 8!!

+ [C] V t � 8!! + � ~g [A ] h!! V  t + !de]
P

h  8! yk! [A]  ~ [V] R" ~   + 8! !T T

+ [C]/R -  v + 8! !!d8 . �.91!

Sy taking the Fourier transform of Equations �. 88! to �.91!,

L L

~  e! = S ~  u!! + E E W iW kSy '  v!
j i~1k=1 k i

L
W k[S ~ ~  u!! + S. ~  u!!] �.92!

k~1 k j j k

in which

S. ~  v! = ST -  e!

j k k j
�.93!

�.94!

the corresponding spectral density functions are readily found
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probability density function of rr is

-1/2 1�
2

P n! �v! exp - 2 rr ! �.97!

The cumulative probability distribution function, Q  q'!, vill

be defined as the probability of the function not exceeding some value

That is

�.98!

It was shown  Rice, 1945! that, for a prescribed period T, the

expected number of times that a peak  or largest, extreme! value n

is intercepted with positive slope is

2
N q ! = uT exp - � n !

max 2 Ihax
�.99!

where v is given by

�. 100!

When ri is large, the occurrence of such interceptions consti-
max

tutee a rare event. Therefore, the Poission distribution may be used

to estimat» the probability that there are given numbers of interceptions

larger than some value q during the same period T  Davenport, 1964!.
max
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For this distribution, the probability of getting exactly r intercep-

tions is

�.101!r Oy ly ~ ~ ~

where N is the expected or the average number of interceptions in the

duration T. The probability that there are no interceptions  i.e.,

rl . Thus it is seen from Equations �.98! and �,101! thatmax'

�. 102!

and upon substitution of Equation �.99!, the probability density

function for the peak value q is
Rax

d 1� 2
exp I,-uT exp � >- ! ] �.103!

"max

which can ie used to evaluate the mean and variance of q . That ismax'

2
EI~ ! = [ z P n !dn

max g max max max

r = 0! is also the probability that the largest value must be less than
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2 -2 2-
o = E[q ] � E [n ]

max max
"max

The above statistical quantities were found  Davenport, 1964; Cart-

wright and I,onguet-Higgins, 1956! to have the following expressions.

E[rl ] = � log vT! + 0.5772� lag ~T! �.104!1/2 -1/2

o ~ m�! � log vT!
-1/2 -1/2

max

�. 105!

It is ioticed that the distribution of the peak values is related

to the product vT. When the value of vT becomes large, o becomes
max

then be written as

+ ~Z [ � log vT! + 0. 5772� log uT! ], �. 106!1/2 -1/2

small, therefore, a narrow distribution results. Usually the storm

duration in the ocean is very long, thus for most practical problems, it

is sufficient to assume the mean peak value of structural response as the

peak  or largest! value of structural response and ignore the variability.

Hence the actual peak value, when referred to the true origin of Z, can
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4. CASE STUDIES

4.1 Idealized Structural Properties and Force Parameters

In this chapter, four offshore towers with individual heights of 475,

675, 875, and 1075 feet corresponding to water depth of 400, 600, 800, and

1000 feet respectively are analyzed by using the method developed in

chapter 3, These towers were previously examined by Penzien et al.,

�972!. The structural details are therefore not given here and only

the pertinent properties of the idealized structures of these towers are

presented.

All four towers are idealized as two-dimensional structures as

shown in Figure 4.1. Since the orientation of the flow is assumed in

the direction of the x-axis, the analysis can be treated as

two-dimensional on the x-y plane, The origin of the structure and

fluid system is selected at the mean water level with the v-axis

vertically upward, A lumped mass model with a reduced coordinate

system i,; used in the dynamic analysis, This model has one dynamic

degree of freedom at each framing level along the x-axis, For such a

lumped mass mode1, the proper value of mass must be assigned to each

degree of freedom. The procedure used is equivalent to partitioning

the structure at mid-framing levels, computing all of the masses

contained within that range, and assigning the total mass to the. degree

of freedom encircled by the range. The total dynamic lumped mass

includes the mass of structure and equipment, enclosed water in flooded

members, and added hydrodynamic mass,
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Figure 4.1, Idealised tower used in case studies
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The flexibility matrix is determined by applying a series of

unit lateral loads to the original structure at the levels for which

dynamic degrees of freedom have been specified. The full set of lateral

displacements obtained separately for unit loads at levels i 1,2..

L yields an L x L flexibility matrix, which when inverted gives the

corresponding L x L stiffness matrix, In the following case studies, the

structural data given by Penzien et al., �972! are based on a structure

with lumped masses at the seven levels  i,e,, L = 7 in Eq. �.29!!

instead of at the fourteen nodal points  N = 14!. This means that the

given mass and flexibility matrices are the transformed matrices, [A]
T

a -1
[N] [A] and [k ] respectively, with dimensions 7 x 7 as indicated by

the relationship in Equations �.32! and �.34!, For the kind of

numbering sequence of the idealized tower shown in Figure 4.1, the

transformation matrix [A] in Equation �.29! is a 14 x 7 matrix of the

form

�. 1!

where the submatrix [I] is a 7 x 7 identity matrix.

Although the masses are given at the seven levels, the wave forces

should be computed at each of the fourteen nodal points � two locations

at each level, since the wave forces are different at the two nodes,

even though they are at the same level. In the following computation,

the drag coefficient C and inertia coefficient C are assumed to

-3
be 1,4 and 2,0 respectively, and the density of sea water p is 2,0 x 10

kip. sec /ft . The wave force parameters, C>pV and 2 CDpA, are accord-2 4 1
2 D p'

P
ingly evaluated at nodal points before the transformation to independent

moordinates is performed.
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The nrmbering sequence of the floor level is from top to bottom.

For exampl», the third level L3 connects node 3 and node 10 as shown in

Figure 4.1. General information on structural properties and wave

force parameters for the four towers considered are summarized in

Tables 4,1  a!, 4.2  a!, 4.3  a!, and 4.4  a!. Units used in these
2

tables are: x and y in feet, mass N at each level in kip sec /ft,

C pV in kip sec /ft, and � C pA in kip sec /ft . Because node 12 1 2 2

2 p

and node 8 are above the mean water level, their enclosed volumes and

projected areas need not be calculated aQ values of CgV and � C t> A
1

p
a -1

are set to zero for these nodes. The flexibility matrices [K ] for

these towers are also included in Tables 4.1 b!, 4,2 b!, 4.3 b!, and

4.4 b!. Tables 4.1 to 4.4 are reproduced from those previously used

by Penzien et al., �972!,

4,2 Results and Discussions of Computer Solution

From the information on structural mass and flexibility matrices

T a -1[A] [M] [A] and [K ], the eigenvalues and eigenvectors of the undamped

free vibrating structure in air can be determined. These free vibration

modal frequencies and mode shapes are used to generate the transformed

damping matrix [A] [C] [A], by assigning modal damping ratios of 0.05T

for all seven modes of the tower standing in air. The technique of

numerical evaluation of an orthogonal damping matrix  Wilson and

Penzien, l972! is provided in Appendix 7.1. Listed in Tables 4.5 to

4.8 are the generated transformed structural damping matrices for Towers

1 to 4, respectively.
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The modal frequencies and mode shapes of the undamped freely vibrating

structure in water are determined using the relation

[k ] [g] = [M ] [g] L o ]

a
in which [k ] is obtained from the inverse of the given structural

flexibility matrix, and the evaluation of [M ] is given by Equation �.32!.

The modal frequencies computed for each tower standing in water are

given in Table 4.9. For comparison, the fundamental frequencies of each

tower standing in air and in water are listed in Table 4.10, which agrees

with results obtained by Penzien et al. �9/2!. The modal matrices for

each tower vibrating in water are given in Tables 4.11, 4.12, 4.13,

and 4.14 respectively.

All relevant characteristics of structures having been obtained, it

is possible now to calculate the structural response to any specified wave

surface spectrum and superimposed currents. The Kitaigorodskii-Pierson-

Moskowitz spectrum for surface wave elevation is selected for this study.

It is noted from Equation �.17! that this spectrum, in fully- developed

wind-gen.rated seas, is a function of the mean wind velocity only. In

this study, three different mean wind velocities at 50, 75, and 100

ft/sec are chosen to calculate the structural responses of each tower.

Also, for each wind velocity, the structural responses of each tour

are calculated with the presence of a steady and uniform current

varying from 0 ft/sec  no current! to 4 ft/sec by increment of 1 ft/sec.

The required statistics of the structural response. may be obtained

by either of the following two methods. The first uses the autocorrelation
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Table 4.9. Modal frequencies  rad/sec! for Towers 1,2,3, and 4

Tower 4Tower 2Tower 1 Tower 3

Table 4.10. Comparison of fundamental frequencies  rad/sec! for towers
vibrating in water and in air

Tower 1 Tower 2 Tower 3 Tower 4

1.1551. 4212.593 1.851In water

1.3691.6442.0862.813In air

2.593

6.074

10.547

14.325

17.964
21.129

24.357

1.851

3.958

7.273

9.829

11.019

14.630

22.050

1.421

2.905

5.321

6.815

8.407

10.439

18.777

1, 155

2.201

3.663

5.174

6. 532

10.546

18.914
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Table 4.11. Modal matrix � Tower 1

� .0482

.3665

.0676. 6500 �. 3759 . 2938 . 2020 �. 1299

.5926 -.4657.5194 � .0023 � .3021 � .5112

.5075 � .6340� .0214

. 5444.0979� .6231[0j-

� .3528.1076 -.5062

.4170 .1939.4781

.0400 .2445 .4093 � .3911 � .2403 � .1630 � .0537

Table 4.12. Modal matrix � Tower 2

.6346.2215.5945 � ~ 5746 � .4013 � .2862

.5048 -.2268 .1135 .2825

.0923

� .1155 � .7590 -.5492

� .1871 «.3715 . 8091

-.1276 -4809 .1991

.3251 � .0739 .0120

� .4734

.7727

.0062 � .0009

.0004 .0010

.4070

.2993

~ 1968

.1099

. 4344

[y] .3652

. 2327

,12L7

~ 0271

.2726 � .5561 � .4595

.4610 � .4365 .1569

.5393 -.0357 .5410

.4704 .3922 .1283

.0241 .4088 .5070

.2458 .5581 .4618

.5427 .2403 � .5260

.4916 � .4810 .1070

.1458 � .2417 .2826
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Table 4.13�Modal matrix -- Tower 3

161 �. 6153 �. 5577 �. 2989 . 1832

110 �. 3663 -. 1051 . 0541 �.1228

606 -.1774 .2103 .2733 � .2669

600 .1734 .6146 .4039 -.1465

174 .4640 ~ 0447 -.5176 .5480

-.3610

.4851

� .1453

.8804

.7423 � .4506

� .2770

.4319 -.4021 � .0495 � .6517

.1542 -.3037 .6321 . 3657

298

325

Table 4.14. Modal matrix � Tower 4

.5418 -.5025 .3694.4088 � .144

� .1086 � .0282 � .4868

,1582 -.3303 � .7464

.880

-.451

� .0345 � .3322

.2742 � .4817

.4023 -.0218

.5529 � .5573 .2610 .028

.5720 � .0359. 2737 . 0933 � .003

.1660 � .5746 � .2859 , 0067 .001

.4520.0692 .0591 -.0010.2899 .2571 � .000

,4942

.4570

[4]= . 3822

-.6253

� .4416

-.3029

.6033

.2902

.0682

.0733

� .0346

.0117

.0281

-.0013

� .0003

.0001
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function R  v! through the time domain as indicated in Equation �.71!.

The second uses the response spectrum S  u! through intergration in the
zz

frequency domain as indicated in Equation �.72!. These two different

approaches give identical results for specific mean square values.

Since the frequency domain approach is computationally more convenient,

it is used in this study.

It is recalled that two types of iteration are required in the

procedure. One type of iteration arises in the computation of the

optimal dampi.ng coefficients of [g] which requires the evaluation of

the quantity a> at each nodal point. The other type of iteration is
i

for the "omputation of the optimal diagonal damping coeffici.ents of

[C ] whi=h requires the evaluation of the quantity E[Y Y ] of the generalized

coordinates. In the main computer program, the quantity c. and E[Y Y j
r

are assigned initial values of unity to begin the iteration. Subsequent

revisions of coefficients of [C] and [C*] are performed by using Equations

�.24! and �.44! respectively. In each cycle of iteration, imbalance

n+1 n nratios of consecutive terms such as ~  C � C ,!/ C ~ and
n+1 * n * n *~  C.. � C. !/ C ~ are formed. When all these imbalance ratios are

less than some specified tolerance limit, chosen to be 0.05 in this study, the

process of iteration is terminated.

It is noted from Equation �.72! that the mean square value of

structural response theoretically requires integration of the

corresponding response spectrum over the frequency range � ~ < ~ <

However, for numerical integration purpose, a finite frequency domain

with cut-off points must be used since most response spectra become

extnanely small at moderate frequencies, beyond which the energy content
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is insignificant. For the three wind speeds considered, the cut-off

frequenci s eb in and v d are shown in Table 4.15. The numerical
begin end

integration is by means of the trapezoidal rule, and the length and

number of subintervals for each wind speed are also shown in Table 4.15.

Table 4.15. Range of numerical integration for 50, 75, and 100
ft/se< wind

2650 l. 50 0.050

1.000.20 320. 025

0.750. 15100 300. 020

For the idealized sevenMegree-of-freedom tower analyzed, there are

seven mode shapes which correspond to the seven modal frequencies to

characterize the dynamic response of the towered However, the more

mode shapes used in the response analysis, the more computer time is

required.. It is important that reasonable number of modes be used to

adequately describe the response without spending too much computer time.

To dete~aine the number of modes necessary for desired accuracy without

undue computer expense, Tower 1 ia selected as a test example. Table

4.16 a! showa the effect of including the first one, two, three, four,

five, six, and seven modes of vibration on the standard deviations of
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Table 4.16  a!, Comparison of standard deviations of displacement with
various modes included � Tower 1, W = 50 ft/sec, V = 0

Standard deviations of dis lacement �0 ft at level
2 3 5 6 7

No. of mode

included

Table 4.16 b! . Comparison of standard deviations of bending moment with
various modes included � Tower 1, W = 50 ft/sec, V = 0

Standard deviations of moment �0 ki ~ ft at levelNg. of mod»

included 3 4 5 6 71 2

11.7 24.1 39.0 56.1 74.9 94.9 94.9
10.1 21.2 35.2 52.1 72.0 94.5 119.1

7.1 17.1 31.8 51.3 74.0 96.6 116.9
4.3 14.7 32.2 53.5 74.2 93 ' 9 117.3
2 ' 4 14.6 33.7 53.1 72 ' 6 94.8 116.7
1.8 15,1 33.8 52,3 73 ' 4 94 ' 4 117.0
1.5 15.6 33.2 52.6 73.1 94.4 116.8

.620

.603

,594
.589

.586

.586

,586

.495

. 495

,505
,518
.528

.532

.533

.388

,401
.419

~ 430
.430

.427

,423

,286
.307

.321

.317

.307

~ 307
.310

.188

.213

.214

.201

.202

.207

,205

.105 .038

.127 .050

.114 .037

.111 .046

.118 .043

.114 .044

.115 .044



Table 4.16 c! . Comparison of standard deviations of shear force with
various modes included � Tower 1, W = 50 ft/sec, V 0

No. of mode Standard deviations of shear �0 ki at level
included 1 2 3 4 5 6 7

1.38
1.18

.83

,50
,29

.21

,17

1. 91 2. 29 2. 62 2. 89 3. 08 3. 20
1. 71 2. 16 2. 61 3. 08 3. 47 3. 82
1. 54 2. 28 3. 01 3. 50 3. 52 3. 13
l. 62 2. 70 3. 29 3. 20 3. 06 3. 63
1 ~ 89 2.96 3.00 3.03 3.43 3.41
2.08 2.88 2.87 3.27 3.25 3,50
2.21 2.73 2.99 3.17 3.30 3.48
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displacement at each level--for Tower 1 under 50 ft/sec wind and zero

current velocity. Tables 4.16 b! and 4.16 c! give respectively the

standard deviations of bending moment and shear of the same tower

using one to seven modes.

It is seen from these tables that the tower responds essentially

in the first mode to the random forces. However, the relative importance

of higher modes is also observed for bending moment and shear. This is

due to the fact that computations of bending moment and shear involve the

differentiations of the expressions for dynamic deflection  Higgs, 1964!.

In this investigation tbe first five modes are used in the dynamic

respons» analysis, Convergence of the iteration process is achieved in

one to three cycles by using the first five modes, The computer run

time depends on the height of tower and the velocities of wind and

current. It takes approximately 1/2 to 1 minute central processor

unit time on an IBM 370/165 computer to obtain the response quantities

of a tower under one wind and current condition,

The structural response quantities obtained are the means, standard

deviations, and peak values of displac.ement, shear, and bending moment.

Since the designer is more interested in the peak. value  maximum response!

that might occur during a storm among other statistics, only the peak

values are presented in the following figures, The peak values of

displacement, shear, and bending moment are computed according to

Equatior. �.106! with an assumed 4 hour storm duration.. That is,

T - �! �0! seconds,
2

The. results presented first are the structural responses calculated

without considering the wave-current interactions effect. The structural
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responses obtained with the effect of wave-current interactions

included are presented and compared at the end of this section.

For a mean wind speed of 50 ft/sec, Figures 4.2 a! to 4.2 d!

show respec tively the peak displacement responses of the Towers 1 to 4,

with the cr.rrent velocity V of 0,2, and 4 ft/sec as the parameter,
c

While it is unusual that current velocity would reach values as high

as 4 ft/sec, for the purpose of parametric study V = 4 ft/sec is
c

included. Since wave-current Interactions are not included in the

analysis, these figures give only the cases of positive current

velocity. The cases of negative current velocity  V < 0! are merely thec

mirror image of those presented curves associated with positive current

velocity  V > 0! .
C

Under the same wind speed of 50 ft/sec, the distributions of peak

total transverse shear for Towers l, 2, 3, and 4 are shown in Figures

4. 3 a!, 4. 3 b!, 4. 3 c}, and 4. 4 d! respectively, The distributions of

peak total overturning moment for the four towers are shown in Figures

4.4 a!, 4.4 b!, 4.4 c!, and 4.4 d}. These responses are calculated

according to the method given in Appendix 7.2 for computation of total

transverse shear and bending moment. Three cases, with different

current velocities V = 0,2, and 4 f t/sec, are shown in each figure.
c

These figures  Figures 4.2, 4.3, and 4,4! indicate, as expected, that

peak responses increase with increase in current speed, not linearly but

in a accelerated manner. This is more vividly seen if the responses are

plotted against current speed., Thus, in Figures 4.5, 4,6, and 4.7 the

peak deck displacement, peak base shear, and peak base moment for wind
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Figure 4.5, Comparison of peak deck displacements of To~era 1,2,3, and 4,
with and without wave-current interactions considered,
50 f t  sec wind



Current velocity V , ft/sec
c

Figure 4.6. Comparison of peak base shears of Towers 1, 2, 3, and 4,
with and without wave-current interactions considered;
50 ftfsec wind
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A Current velocity V, ft/sec
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Figure 4.7. Comparison of peak base moments of Towers 1, 2, 3, and 4,
with and wi,thout wave-current interactions considered;
50 ft/sec
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speed V 50 ft/sec are plotted. The nonlinear characteristics of the

response quantities as functions of current speed are clearly noted. It

is also s en that the current effects are more important for tall and slender

towers than short and rigid towers.

The peak responses of each tower are also computed for mean wind

speeds of 75 and 100 ft/sec. The complete results for these two wind

speeds ar considtent to the results for the 50 f t/sec wind speed

case and are therefore not given. Some partial results, however, are

presented here so that effects of wind speed on structural responses can be

examined. To achieve this purpose, it is convenient to introduce a

ratio factor. This ratio factor is defined as the ratio of the peak

response at any current velocity to the peak response which would result

when no current  V ~ 0! exists. Figure 4.8 shows the ratios for the
C

peak deck displacement under wind speeds of 50, 75, and 100 ftfsec,

respectively, Similarly, the ratios for the responses of peak.

base shear and peak base moment are shown in Figures 4.9 and 4.10. It is

seen from these figures that the influence of current on structural

response diminishes as the wind speed increases.

The results shown above are all calculated without considering

wave-current interactions. To study the effect of wavemurrent

interactions on structural response, the peak deck displacement, peak

base shear, and peak base moment are again plotted against current speed

in Figures 4.5, 4.6, and 4,7 along with the case when wave-current

interactions effects are ignored. It is noted that V > 0 means
c
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current is in the direction of wave propagation, and V < 0 means

current is opposite to the waves. As would be expected, for a given

absolute value of current velocity, the response in the presence of

positive current velocity  V > 0! is smaller than the response
c

when the current velocity is negative  V < 0!. However, the
C

influenc» of wave-current interactions on structural response is seen

to be rather slight, especially when the structure is rigid. This is

due to the fact that the fundamental frequencies of the towers studied

are much larger than the predominant wave frequencies.



5, CONCLUSIONS AND RECOMMENDATIONS

In this study, the dynamic response of offshore structures to

combined action of random waves and steady currents is formulated, the

equivalent linearization technique is used, and the response

characteristics of four towers are examined for various wind speed

and current strength with and without the wave-current interactions

phenomenon considered. It is noted in the formulation and development

of the solution method that, due to the nonlinear nature of drag forces,

the drag forces of current cannot be simply added to those of waves.

Hence the manner in which currents affect the dynamic response of

structures cannot be simply obtained but must resort to numerical case

studies. Based on the numerical results, it may be concluded that:

1. The influence of current on structural responses is significant,

especially when the structure is tall and flexible; however, the effect

is smaller when the wind speed becomes larger.

2. The effect of wave-current interactions on structural response

is not very important for the type of towers examined in this study.

It should be noted that the current is assumed to be uniformly

distributed along water depth and in deep water. In the future research,

it will be a ma!or undertaking to consider the current nonuniformly

distributed along the depth of water.
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7 APPENDICES

7. 1 Structural Damping Matrix

For lumped mass systems the general dynami.c equations of motion

are

[M!  U! + [C]  U] + [k]  U! =  F  t! ] �, 1!

where [M], [C], and [K] are the NxN structural mass, damping, and

stiffness matrices, respectively, and where  U] and  F t!! are the

corresponding Nxl displacement and force vectors.

The undamped free vibration mode shapes and frequencies are

obtained by solving the equations

The damping matrix for a structure vibrating in air i.s generally

not known in explicit form, If a numerical analysis with an optimization

procedure as explained in Sec. 3.5 is to be made, actual damping
coefficients must in some way be determined. In the usual formulation of

modal analysis, the damping matrix [C! of Equation �.3! is selected

so that it can be uncoupled in the same way through the generalized

coordinate transformation as the mass [M] and stiffness [K] matrices.

In order to be sure that the damping coefficients are reasonable, it is

advisabl» to relate these to the percentage of critical damping in each

mode. This relation may be established by the following procedure which

is originally developed by Wilson and Penzien �972!.
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2
where [$'] is the NxN mode shape matrix and [e ] is a NxN diagonal

r
2

frequercy matrix containing the squared frequencies ~ , r = 1, 2, ...,N.r'

Introducing the generalized coordinate as U}= [$']  Y}, and

assuming the damping matrix to possess the same orthogonality property

as does the mass and stiffness matrices, i.e.,

 tI'} [C]  q'}= 0, rP s �. 3!

where  Q'} and  $'! are the mode shape vectors of r and s, respectively,
r S

one can obtain the following uncoupled equations of motion as

~ ~
[M>]  y ! + [Ci]  y! + [K i]  ~!  Fl  t! } �,4!

C' = �'! [C] �'! = 2M'u q

r=1,2...N �.5!

K' =  q'! [k]  q'! = 8' mT
r r' r r

where q is the damping rati.o of the r mode of vibration,th.

where [M'], [C' j, and [k'] are the generalized diagonal mass, damping,

and stiffness matrices, respectively, and where  P'  t! ! is the generalized

force vector. The individual terms in these matrices are given by the

relations
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To establish a numerical damping matrix with assigned damping

ratios, first consider the generalized damping matrix [C'] as

defined br the second part of Equation �.5!, After simple matrix

manipulation, one obtains the relation

�. 6!

Substituting the above equations into Equation �.6! yields

�. 7!

or [c] = [el [8] [e] �. 8!

�. 9!where [y] = [M] [g']

�. 10!and

It can be seen from Equaticn �.5! that the terms of the diagonal

matrix [5] are given by

2$
r r

r

� .11!

,.T-1 I T -1where [0'] is the inverse of [4'] @nd [4'] is the inverse of

[f']. Usfng the first part of Equation �.5!, it can be shown that
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An alternate form of Equation �.8! is a summation of modal damping

matrices [C J, i.e.,

24

[c] = K [c]
r 1

�. 12!

where [C ] is a matrix which produces damping in mode r only and may

be calculated directly from the relation

[c ] - 8  e !  e ! �.13!

Thus, each modal damping ratio < provides an independent contribution

to the damping matrix [C]. Since each of the damping matrices [C ] in
r

Equation �.12! produces damping in a given mode and zero damping in all

other modes, the advantage of this procedure is that arbitrary modal

damping can be assigned directly. The modal damping ratios should be

estimateti based on the known physical properties of the system. For

steel structures, these ratios are very low, varying from 0.01 to 0.02.
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7.2 Computation of Shear and Bending Moment

The statistics of displacements at nodal points are usually the

first q~antities determined from the dynamic analysis presented in

Chapter 3. Tt is convenient to establish a NFxN force and

displacement relation matrix [p ! so tbat s Npxl internal member
force vector  Q! can be related to the Nxl displacement vector  Xj.

 Q t!} - [ xl <x t! ] �. 14!

The autocorrelation function of the process Q is defined as

[RQQ <!] = E[ Q t!! '  Q t + z!! ] �.15!

Substitution of Equation �.14! into the above equation gives

[I{  ~!] = [>QX] [R  ~!] [uQ!{'] � ~ 16!

Since [p ] is a matrix of constant elements, Fourier transform of

both sides of Equation �,16! gives

[QQ !] [PQ+][SXX !][~QX] �. 17!

Ttlus, the response spectrum of member force is related to the

response spectrum of the displacement. The statistics of member force

can be obtained in the same way as the general response function Z t!

are obtained as described in Section 3.6.

An example is given here to demonstrate the construction of the

matrix [p ]. Figure 7.1 shows a transformed independent coordinate system
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85'

65'

65'

65'

65'

Pipurs 7.1. Total transverse forces on an independent coordinate svstem.
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which corresponds to the idealized tower in Figure 3.2. If the

independent displacement vector  X! is known, then an elastic force

vector  P ! acting at each independent coordinate, can be evaluated
e

by the stiffness relation

 P ! = [k ]  X! �.18!

where Ik ] is the transformed structural stiffness matrix of thea

indepenc.ent coorindate.

th
section parallel to the ocean floor and at a level between the i

and  i+ ! coordinate.  g ! relates to the elastic force  P !th
e

through a dimensionless summing matrix

1 0 0 0 0
1 1 0 0 0
1 1 1 0 0

1 1 1 1 0
1 1 1 1

[u+p ] �. 19!

which establishes the relation as

 q ! = [u� ]  P !
'W e

�. 20!

For example, the total transverse shear  Q is the sum of P and P
2 1 2

as can be seen from Figure 7.1.

Th< total transverse shear vector is indicated by  Q!, of which

the i element represents the total shear force across a towerth
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Tte shear force and displacement relation matrix [p j can thus
Q X

be con tructed by substituting Equation �.18! into Fquation �.20!,

which r e su 1 t s in

[i@X] = [u P ] l~] ~QP
�.21!

Similarly, the total overturning moment vector is indicated by

.th
� !, cf which tlat i element represents the total bending moment across

ththe section just above the i coordinate. The overturning moment at

the ba:e of the structure becomes Q in this example,
5

The lever.-arm matrix [p j relates � ! and  P j. by'm e

!=[up] P!Q P
�. 22!

in which

�. 23![p~p ]

For ex ample, the total overturning moment 0 is the sum of P acting
2 '2

through a 65-foot arm and P acting through a 150-foot arm.
1

Therefore, combining Equations �.18! and �.22!, one obtains the

bending moment and displacement relation matrix [u ] as

85 0 0 0

150 65 0 0
215 130 65 0

280 195 130 65

345 260 195 130

0 0 0 0
65
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7.3 Notation

[A] transformation matrix

pro]ected area of structural membersA
P

B<, B , B constant coefficients
r' s

[c] structural damping matrix

optimal damping matrix

equals to [C] � [C]

transformed optimal damping matrix

coupled damping matrix

optimized diagonal damping matrix in water

generalized structural damping matrix in air

drag coefficient

inertia coefficient

r modal damping matrixt}1

[c]

[c]

[0 ]

[c ]

[c ]

[c']

[C,]

Cov X,Y! covariance of processes X and Y

diameter of cylinder

error term

E

E[]

 F t! !

 F'  t! ! generalized force vector

error term

expected  or mean! value of the quantity enclosed,

force vector
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th
complex frequency response function for the k mode,

structural stiffness matrix

transformed structural stiffness matrix

generalized structural stiffness matrix in water

generalized structural stiffness matrix in air

wave length, or number of independent coordinate

structural mass matrix

matrix of structural and added mass

transformed mass matrix of [N]

generalized mass matrix in water

generalized mass matrix in air

number of dependent coordinate, or number of iterative cycles.

expected number of times that a peak n is intercepted
max

vector of fluid forces at dependent coordinates

transformed fluid force vector

generalized fluid force vector

probability density function

cumulative probability distribution function

internal member force vector

total transverse shear vector

total overturning moment vector

cross-correlation function of processes K and Y
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v t!

v t!

V
c

X t!

process

I ~
X t!, X t! first and second derivatives of generalized coordinate,

respectively.

Y  t!

Y t!, Y t!

response function

s~ ~!

s 4!
rig

v t!

v t!

v t!

cross-spectral density function of processes X and Y

one-dimensional wave spectrum

wave period, or storm duration, or matrix transposition operation.

structural nodal displacement

structural nodal velocity

structural nodal acceleration

fluid particle velocity of wave motion

fluid particle acceleration of wave motion

current velocity

mean wind speed

constant coefficient matrix in equation �.83!

displacement of independent coordinate, or a general random

generalized coordinate, or a general random process

first and second derivatives of generalized coordinate,

respectively
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wave amplitude, or constant

constant

water depth

fluid force on element of cylinder

error function

dF t!

erf  !

effective forcing function

arbitrary functionf  ~!

gravitational acceleration

th
unit impluse response function for the k modehk t!

th th
node, or a subscript represents the j coordinate

generalized coordinate for mode k, or a subscript

dummy index

dummy index

th .th
i node, or a subscript represents the i coordinate, or

an imaginary unit
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dummy index, or subscript for the r modeth

relative velocity between fluid particle velocity of wave

motion and nodal velocity of structure

th
a subscript for the s mode

t ime

dummy variable

dummy variable

horizontal coord.inate, in direction of wave propaf,ation

vertical coordinate, .~1th origin at mean water level

horizontal coordinate, perpendicular to x, in the lateral

direction
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constant

constant

matrix used in Equation �.10!

Dirac delta function

modal damping ratio in air for the r mode
th

surface displacement from mean water level

variable

dummy variable

dummy variables

matrix used in Equation �.9!

wave number

wave phase angle

force and displacement relation matrix

quantity defined in Equation �.100!

the k modal damping ratio for optimized diagonal dampingth

matrix

density of sea water

standard deviation of Z

var iance o f Z
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time lag

velocity potential

matrix of mode shapes for structure in water

[f'! matrix of mode shapes for structure in air

the k mode shape vector
th

-:he i element of the k mode shape vector @gth th

wave frequency, or frequency of the complex frequency response

function

th
natural circular frequency of the k mode

th
damped natural circular frequency of the k mode

dk
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